The water absorption and conditioning of molded parts in Durethan[®]

Lanxess HK Semi-Crystalline Product Asia Pacific

Topics

- 1. Water Absorption Behavior of Polyamide
- 2. Effect of Water Absorption on Molded Parts
- 3. Factors Affecting Water Absorption
- 4. Conditioning

- Characteristic of semi-crystalline polyamide
- Different type of polyamide
 - \rightarrow Different extent of water absorption
 - \rightarrow Depends on CH₂ to CONH group Ratio
- Practically, 2 values specified
 - \rightarrow Saturation state after immersion in water
 - → Standard atmosphere (DIN 50014, $23^{\circ}C$, 50% RH)

- A reversible process
- Water is bonded into polyamide by
 - → Hydrogen bridges
- Weakens the intermolecular forces
 - → Plasticising effect
 - \rightarrow Reduce glass translation temp.
 - → Increase volume / dimension

Figure 1: Water absorption of polyamide moldings when saturated following immersion in water at 23oC and their state of equilibrium in a standard atmosphere of 23 °C, 50% of relative humidity.

10 % 8 Figure 2: Water Absorption of Durethan A (2 mm wall thickness) as a function of Water absorption 6 storage time. 4 2 0 100 150 200 50 250 h 0 Storage/immersion time in water 20 °C A 30 at 23 °C/50 % r. h A 30 AKV 30 in water 20 °C AKV 30 at 23 °C/50 % r. h

Relative humidity Grade in %	30	56	62	95	Immersion in water
A 30/A 31	0.9	2.1	2.7	7.8	8.3
AKV 30	0.6	1.5	1.9	5.2	5.8
KU 2-2511/30 ^b	())		1.3	2.9	3.8
B 30 S/B 31 SK	1.2	2.4	3.1	9.0	9.7
BKV 30	0.8	1.6	2.2	6.0	6.4
BKV 30 RM ¹⁾	-	-	1.6	3.1	3.9

Table 1: Equilibrium water contents (in %) of Durethan grades on storage in a humid climate and immersion in water.

- PA 6 absorbs slightly more water than PA 66
- Elastomer/mineral modified or glass fiber reinforced
 - → Water absorption depends on PA component
- Durethan RM grades
 - \rightarrow special product for low water absorption

Determining the Water Content

- Weight parts before and after conditioning
- For unknown initial water content
 - \rightarrow Drying in a vacuum at 75 $^{\circ}C$
 - \rightarrow Measure initial and final weights
- By differential vapor pressure
 - \rightarrow Heat parts in closed, evacuated vessels at 200 °C
 - → Measure increase in partial pressure
- By volumetric titration (DIN 53715)
 - → Karl Fischer Method

Effect of Water Absorption on Molded Parts

Effect of Water Absorption on Molded Parts

Change in Mechanical Properties

Dimensional

Change

Change in Mechanical Strength

Improved Impact, and Notched Impact Strength

Changed Mechanical Properties

Figure 4: Stress-strain diagram from the tensile test to ISO 527 for Durethan B30 S with different water content

Changed Mechanical Properties

Figure 5: Stress-strain diagram to ISO 527 and DIN 53455 for Durethan B30 S and Durethan A30 S in the freshly molded and conditioned states (conditioned in accordance with ISO 1110)

Figure 6: Stress-strain diagram to ISO 527 and DIN 53455 for Durethan BKV30 and Durethan AKV30 in the freshly molded and conditioned states (conditioned in accordance with ISO 1110)

0 0 1 2 3 4 % 6 Strain AKV 30 freshly moulded AKV 30 conditioned BKV 30 freshly moulded BKV 30 conditioned

Dimensional Change through Water Absorption

Figure 7: Dimensional change in rectangular specimen (150 x 90 x 3 mm) in Durethan B30 S injected from the front end.

Figure 8: Dimensional change in rectangular specimen (150 x 90 x 3 mm) in Durethan BKV30 injected from the front end.

Conditioning

Factors Affecting Water Absorption

- Material type (degree of saturation, diffusion index)
- Time
- Temperature (affects diffusion index)
- Parts geometry (particularly wall thickness)

Conditioning

Method	Conditions	Advantages	Drawbacks	Applications
Tropical climate	40 °C, 90 to 95 % relative humidity	gentle action, particularly for coloured grades of Durethan BKV and Durethan AKV	high plant costs	power tools, vacuum cleaner housings
Immersion in hot water	80 to 90 °C	rapid	discoloration through oxidation, water stains	plugs, casters, etc.
Immersion in warm water	60 °C	sufficiently rapid and recommended		as above
Immersion in cold water	20 to 40 °C	inexpensive	amount of time required	frequently used for large mouldings, such as seat shells
Packaged in a PE bag	RT with addition of 2 to 5 % water	low-cost	uncontrolled moisture content	frequently used for miscellaneous small parts
Saturated steam ·	95 to 100 °C, 100 % relative. humidity	rapid	discoloration through oxidation, deposit formation, tendency to warp	thick-walled parts
Defined immersion time	RT, ambient humidity	almost neutral as regards costs	uncontrolled conditions	any application, providing immersion time is sufficient
ISO 1110	70 °C, 62 % relative humidity	conforms with the Standard		only for test specimens

